We use cookies to enhance your experience on our website. By continuing to use our website, you are agreeing to our use of cookies. You can change your cookie settings at any time. Find out more

Signal Processing and Linear Systems

B. P. Lathi

Publication Date - February 2000

ISBN: 9780195219173

864 pages
7 x 10 inches

In Stock

Retail Price to Students: $199.95


This text presents a comprehensive treatment of signal processing and linear systems suitable for juniors and seniors in electrical engineering. Based on B. P. Lathi's widely used book, Linear Systems and Signals, it features additional applications to communications, controls, and filtering as well as new chapters on analog and digital filters and digital signal processing. Lathi emphasizes the physical appreciation of concepts rather than the mere mathematical manipulation of symbols. Avoiding the tendency to treat engineering as a branch of applied mathematics, he uses mathematics to enhance physical and intuitive understanding of concepts, instead of employing it only to prove axiomatic theory. Theoretical results are supported by carefully chosen examples and analogies, allowing students to intuitively discover meaning for themselves.


  • Emphasis on intuitive and heuristic understanding of concepts
  • Extensive applications in the areas of communication, controls, and filtering
  • Large number of MATLAB® examples.
  • Background chapter to reacquaint students with basic mathematical requisites
  • Over 200 worked examples along with exercises and their answers
  • A summary at the end of each chapter for effective chapter review
  • Several interesting and inspiring historical notes

About the Author(s)

B.P. Lathi is currently a Professor of Electrical Engineering at California State University at Sacramento. He holds a B.S. degree from the University of Poona, India, an M.S.E.E. from the University of Illinois, and a Ph.D.E.E. from Stanford University.

Table of Contents

    B.1. Complex Numbers
    B.2. Sinusoids
    B.3. Sketching Signals
    B.4. Cramer's Rule
    B.5. Partial Fraction Expansion
    B.6. Vectors and Matrices
    B.7. Miscellaneous
    Chapter 1. Introduction to Signals and Systems
    1.1. Size of a Signal
    1.2. Classification of Signals
    1.3. Some Useful Signal Operations
    1.4. Some Useful Signal Models
    1.5. Even and Odd Functions
    1.6. Systems
    1.7. Classification of Systems
    1.8. System Model: Input-Output Description
    Chapter 2. Time-Domain Analysis of Continuous-Time Systems
    2.1. Introduction
    2.2. System Response to Internal Conditions: Zero-Input Response
    2.3. The Unit Impulse Response h(t)
    2.4. System Response to External Input: Zero-State Response
    2.5. Classical Solution of Differential Equations
    2.6. System Stability
    2.7. Intuitive Insights into System Behavior
    2.8. Appendix 2.1: Determining the Impulse Response
    Chapter 3. Signal Representation by Fourier Series
    3.1. Signals and Vectors
    3.2. Signal Comparison: Correlation
    3.3. Signal Representation by Orthogonal Signal Set
    3.4. Trigonometric Fourier Series
    3.5. Exponential Fourier Series
    3.6. Numerical Computation of Dn
    3.7. LTIC System response to Periodic Inputs
    3.8. Appendix
    Chapter 4. Continuous-Time Signal Analysis: The Fourier Transform
    4.1. Aperiodic Signal Representation by Fourier Integral
    4.2. Transform of Some Useful Functions
    4.3. Some Properties of the Fourier Transform
    4.4. Signal Transmission through LTIC Systems
    4.5. Ideal and Practical Filters
    4.6. Signal Energy
    4.7. Application to Communications: Amplitude Modulation
    4.8. Angle Modulation
    4.9. Data Truncation: Window Functions
    Chapter 5. Sampling
    5.1. The Sampling Theorem
    5.2. Numerical Computation of Fourier Transform: The Discrete Fourier Transform (DFT)
    5.3. The Fast Fourier Transform (FFT)
    5.4. Appendix 5.1
    Chapter 6. Continuous-Time System Analysis Using the Laplace Transform
    6.1. The Laplace Transform
    6.2. Some Properties of the Laplace Transform
    6.3. Solution of Differential and Integro-Differential Equations
    6.4. Analysis of Electrical Networks: The Transformed Network
    6.5. Block Diagrams
    6.6. System Realization
    6.7. Application to Feedback and Controls
    6.8. The Bilateral Laplace Transform
    6.9. Appendix 6.1: Second Canonical Realization
    Chapter 7. Frequency Response and Analog Filters
    7.1. Frequency Response of an LTIC System
    7.2. Bode Plots
    7.3. Control System Design Using Frequency Response
    7.4. Filter Design by Placement of Poles and Zeros of H(s)
    7.5. Butterworth Filters
    7.6. Chebyshev Filters
    7.7. Frequency Transformations
    7.8. Filters to Satisfy Distortionless Transmission Conditions
    Chapter 8. Discrete-Time Signals and Systems
    8.1. Introduction
    8.2. Some Useful Discrete-Time Signal Models
    8.3. Sampling Continuous-Time Sinusoids and Aliasing
    8.4. Useful Signal Operations
    8.5. Examples of Discrete-Time Systems
    Chapter 9. Time-Domain Analysis of Discrete-Time Systems
    9.1. Discrete-Time System Equations
    9.2. System Response to Internal Conditions: Zero-Input Response
    9.3. Unit Impulse Response h[k]
    9.4. System Response to External Input: Zero-State Response
    9.5. Classical Solution of Linear Difference Equations
    9.6. System Stability
    9.7. Appendix 9.1: Determining Impulse Response
    Chapter 10. Fourier Analysis of Discrete-Time Signals
    10.1. Periodic Signal Representation by Discrete-Time Fourier Series
    10.2 Aperiodic Signal Representation by Fourier Integral
    10.3. Properties of DTFT
    10.4. DTFT Connection with the Continuous-Time Fourier Transform
    10.5. Discrete-Time Linear System Analysis by DTFT
    10.6. Signal Processing Using DFT and FFT
    10.7. Generalization of DTFT to the Z-Transform
    Chapter 11. Discrete-Time System Analysis Using the Z-Transform
    11.1. The Z-Transform
    11.2. Some Properties of the Z-Transform
    11.3. Z-Transform Solution of Linear Difference Equations
    11.4. System Realization
    11.5. Connection Between the Laplace and the Z-Transform
    11.6. Sampled-Data (Hybrid) Systems
    11.7. The Bilateral Z-Transform
    Chapter 12. Frequency Response and Digital Filters
    12.1. Frequency Response of Discrete-Time Systems
    12.2. Frequency Response From Pole-Zero Location
    12.3. Digital Filters
    12.4. Filter Design Criteria
    12.5. Recursive Filter Design: The Impulse Invariance Method
    12.6. Recursive Filter Design: The Bilinear Transformation Method
    12.7. Nonrecursive Filters
    12.8. Nonrecursive Filter Design
    Chapter 13. State-Space Analysis
    13.1. Introduction
    13.2. Systematic Procedure for Determining State Equations
    13.3. Solution of State Equations
    13.4. Linear Transformation of State Vector
    13.5. Controllability and Observability
    13.6. State-Space Analysis of Discrete-Time Systems
    Answers to Selected Problems
    Supplementary Reading
    Each chapter ends with a Summary

Related Titles