We use cookies to enhance your experience on our website. By continuing to use our website, you are agreeing to our use of cookies. You can change your cookie settings at any time. Find out more
Oxford University Press - Online Resource Centres

Elliott & Elliott: Biochemistry and Molecular Biology 4e

Chapter 27

Please note that some of the sites you will be directed to from this page may require a username and password to access the article.

Struhl, K. (1998). Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell 98, 1-4 [DOI: 10.1016/S0092-8674(00)80599-1].
A minireview looking in broad terms at the mechanisms of gene transcription control in the two classes.

Hunter, T. (2000). Signalling -2000 and beyond. Cell 100, 113-27 [DOI: 10.1016/S0092-8674(00)81688-8] [PubMed: 10647936].
A major review that comprehensively discusses all aspects of cell signalling in clearly defined sections. Probably more suitable for the advanced student.

Various authors. (2002). Mapping cellular signaling. Science, 296, 1634-57 [DOI: 10.1126/science.1071924] [PubMed: 12040173].
Multiple, succinct coverages of G protein pathways, T cell receptors, integrins, JAK/STAT, and PI 3-kinase pathways.

G proteins

Neer, E. J. (1997). Intracellular signalling: turning down G protein signals. Curr. Biol., 7, R31-3 [DOI: 10.1016/S0960-9822(06)00014-5].
Reviews the family of regulators of G protein signalling (RGS) which modulate the GTPase activity of the α subunits of G proteins.

Dhanasekaran, N. et al. (1998). Regulation of cell proliferation by G proteins. Oncogene 17, 1383-94 [DOI: 10.1038/sj.onc.1202242] [PubMed: 9779986].

Ross, E. M. and Wilkie, T. M. (2000). GTPase-activating proteins for heteromeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem., 69, 795-827 [DOI: 10.1146/annurev.biochem.69.1.795].


Pawson, T. (1994). Look at a tyrosine kinase. Nature, 372, 726-7 [DOI: 10.1038/372726a0] [PubMed: 7997256].
A News and Views item on the three-dimensional structure of the insulin receptor.

Pitcher, J. A., Freedman, N. J., and Lefkowitz, R. J. (1998). G protein-coupled receptor kinases. Annu. Rev. Biochem., 67, 653-92 [DOI: 10.1146/annurev.biochem.67.1.653].
A comprehensive review of the densensitization (downregulation) of receptors. More suitable for advanced students.

Inflammatory response

Ghosh, S., May, M. J., and Kopp, E. B. (1998) NF-kB and rel proteins: evolutionarily conserved mediators of immune responses. Ann. Rev. Immunol., 16, 225-60 [DOI: 10.1146/annurev.immunol.16.1.225].

Buckbinder, L. and Robinson, R. P. (2002). The glucocorticoid receptor: molecular mechanism and new therapeutic opportunities. Curr. Drug Targets: Inflamm. Allergy, 1, 127-36 [DOI: 10.2174/1568010023344751].

Chen, G. and Goeddel, D. V. (2002). TNF-R1 signaling: a beautiful pathway. Science, 296, 1634-5 [DOI: 10.1126/science.1071924] [PubMed: 12040173].
Short review summarizing the engagement of tumour necrosis factor with its receptor and the pathway leading to the downstream events, apoptosis and NF-kB activation.

Yamamoto, Y. and Gaynor, R. B. (2004). IκB kinases: key regulators of the NF-kB pathway. Trends Biochem. Sci., 29, 72-9 [DOI: 10.1016/j.tibs.2003.12.003].

Perkins N. D. (2007). Integrating cell signalling pathways with NF-kB and IKK function. Nature Reviews. Mol. Cell Biol., 8, 40-62.
Comprehensive account of role in inflammatory response. NF = nuclear factor; IKK = NF-kB kinase.

Nitric oxide

Mayer, B. and Hemmens, B. (1997). Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem. Sci., 22, 477-81 [DOI: 10.1016/S0968-0004(97)01147-X].
A succinct review

Signalling pathways

Nishizuka, Y. (1994). Protein kinase C and lipid signalling for sustained cellular responses. FASEB J., 9, 484-96.
Summary of the signalling pathways using inositol phospholipid hydrolysis, and the degradation of various other membrane lipid constituents.

Karin, M. and Hunter, T. (1995). Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr. Biol., 5, 747-57 [DOI: 10.1016/S0960-9822(95)00151-5].
Compares the Ras pathway and the JAK pathway

Quilliam, L. A., Khosravi-Far, R., Huff, S. Y., and Der, C. J. (1995). Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. BioEssays, 17, 395-404 [DOI: 10.1002/bies.950170507] [PubMed: 7786285].
A fairly advanced but readable review of the control of Ras activity.

Burgering, B. M. T. and Bos, J. L. (1995). Regulation of Ras-mediated signalling: more than one way to skin a cat. Trends Biochem. Sci., 22, 18-22 [DOI: 10.1016/S0968-0004(00)88944-6].
Extensively reviews interaction of the Ras pathway with other signalling routes.

Elion, E. A. (1998). Routing MAP kinase cascades. Science, 281, 1625-6 [DOI: 10.1126/science.281.5383.1625] [PubMed: 9767029].
A ?perspectives? article briefly and clearly summarizing scaffold proteins. See also the two similar following articles (pages 1668 and 1671) by H. J. Schaeffer et al. and A. J. Whit marsh et al, respectively.

Irvine, R. (1998). Inositol phospholipids: translocation, translocation, translocation.?. Curr. Biol., 8, R557-9 [DOI: 10.1016/S0960-9822(07)00360-0].
Pleckstrin homology (PH) domains interact with membrane inositol phospholipids.

Mochly-Rosen, D. and Gordon, A. S. (1998). Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB J., 12, 35-2.
Describes isozymes of the PKC family

Whitmarsh, A. J. and Davis, R. J. (1998). Structural organisation of MAP kinase signalling modules by scaffold proteins in yeast and mammals. Trends Biochem. Sci., 23, 481-5 [DOI: 10.1016/S0968-0004(98)01309-7].
Reviews the role of scaffold proteins in the organization of different MAP kinase pathways.

Evans, D. R. H. and Hemmings, B. A. (1998). What goes up must come down. Nature, 394, 23-4 [DOI: 10.1038/27782] [PubMed: 9665122].
A News and Views article dealing with the physical association of MAP kinases and phosphatases and the switch-off of signalling pathways.

Sceffzek, K., Ahmadian, M. R., and Wittinghofer, A. (1998). GTPase-activating proteins: helping hands to complement an active site. Trends Biochem. Sci., 23, 257-62 [DOI: 10.1016/S0968-0004(98)01224-9].
Reviews the GAPs or proteins that regulate the GTPase activities of small GTP-binding proteins involved in signal transduction.

Vanhaesebroek, B., Leevers, S. J., Panoyotou, G., and Waterfield, M. D. (1998). Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci., 22, 267 [DOI: 10.1016/S0968-0004(97)01061-X].
Describes several families of PI 3-kinases and their roles in signalling pathways.

Krugman, S. and Welch, H. (1998). PI 3-kinase. Curr. Biol., 8, R828 [DOI: 10.1016/S0960-9822(07)00522-2].
A single-page quick guide giving salient features of the signalling pathways activated by this enzyme.

Alessi, D. R. and Cohen, P. (1998). Mechanism of action and function of protein kinase B. Curr. Opin. Genet. Dev., 8, 55-62 [DOI: 10.1016/S0959-437X(98)80062-2].
Deals with the activation of the kinase and its role in insulin signalling.

Cohen, P. (1999). The Croonian Lecture 1998. Identification of a protein kinase cascade of major importance in insulin signal transduction. Phil. Trans. Ser. B. Roy. Soc. Lond., 354, 485-95.
A readable review of this work

Williams, J. G. (1999). Serpentine receptors and STAT activation: more than one way to twin a STAT. Trends Biochem. Sci., 24, 333-4 [DOI: 10.1016/S0968-0004(99)01443-7].
A concise summary of the way in which membrane receptors activate STAT proteins.

Misra, S., Miller, G. J., and Hurley, J. H. (2001). Recognising phosphatidylinositol 3-phosphate. Cell 107, 559-62 [DOI: 10.1016/S0092-8674(01)00594-3] [PubMed: 11733055].
Minireview on signalling role of PI(3)P in membranes.

Brazil, D. P., Park, J., and Hemmings, B. A. (2002). PKB binding proteins: getting in on the Akt. Cell 111, 293-303 [DOI: 10.1016/S0092-8674(02)01083-8] [PubMed: 12419241].
Reviews diverse roles of PKB (also known as Akt)

Ceulemans, H., Stalmans, W., and Bollen, M. (2002). Regulator-driven functional diversification of protein phosphatase-1 in eukaryotic evolution. BioEssays, 24, 371-81 [DOI: 10.1002/bies.10069] [PubMed: 11948623].

O?Shea, J. J., Gadina, M., and Schreiber, R. D. (2002). Cytokine signaling in 2002: new surprises in the Jak/STAT pathway. Cell 109, S121-31 [DOI: 10.1016/S0092-8674(02)00701-8] [PubMed: 11983158].
Reviews the field and covers negative regulation

Hammes, S. R. (2003). The further redefining of steroid-mediated signaling. Proc. Natl. Acad. Sci. U.S.A., 100, 2168-70 [DOI: 10.1073/pnas.0530224100] [PubMed: 12606724].
A new development - membrane steroid receptors

Park, S.-H., Zarrinpar, A., and Lim, W. A. (2003). Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science, 299, 1061-4 [DOI: 10.1126/science.1076979] [PubMed: 12511654].

Pawson, T. and Nash, P. (2003). Assembly of cell regulatory systems through protein interaction domains. Science, 300, 445-52 [DOI: 10.1126/science.1083653] [PubMed: 12702867].
Advanced research-level review of modular domains and signalling proteins.

Ptashne, M. and Gann, A. (2003). Imposing specificity on kinases. Science, 99, 1025-7 [DOI: 10.1126/science.1081519].

Parker, P. J. and Murray-Rust, J. (2004). PKC at a glance. J. Cell Sci., 117, 131-2 [DOI: 10.1242/jcs.00982].

Survey of the various members of the PKC family, phylogenetic relationships, and domain structures. Poster and interactive version online at www.jcs.biologists.org.

Hancock, J. F. and Parton, R. G. (2005). Ras plasma membrane signalling platforms. Biochem. J., 389.

Meder D. and Simons, K. (2005). Ras on the roundabout. Science, 307, 1731-3 [DOI: 10.1126/science.1110551] [PubMed: 15774748].
A perspectives article

Carey, P. L., Winger, J. A., Derbyshire, E. R. and Marietta, M. A. (2006). Nitric oxide signalling: no longer simply on or off. Trends Biochem. Sci., 31, 239.

Moscat, J. et al. (2007). Signal integration and diversification through p62 scaffold protein. Trends Biochem. Sci., 32, 95-100 [DOI: 10.1016/j.tibs.2006.12.002].

Vogt, P. K. et al. (2007). Counter-specific mutations in PI 3-kinase. Trends Biochem. Sci., 32, 342-9 [DOI: 10.1016/j.tibs.2007.05.005].
PI 3-kinase mutation frequencies exceeding 30% are found in diverse human cancers.

Haemopoietic growth factors

Metcalf, D. (1991). The 1991 Florey Lecture. The colony-stimulating factors: discovery to clinical use. Phil. Trans. Ser. B Roy. Society Lond., 333, 147-73.
An in-depth review of the progression from unidentified factors to their widespread clinical use.


Stark, G. R. et al. (1998). How cells respond to interferons. Annu. Rev. Biochem., 67, 227-64 [DOI: 10.1146/annurev.biochem.67.1.227].
A comprehensive review

Calcium homeostasis

Bootman, M. D. and Berridge, M. J. (1995). The elemental principles of calcium signalling. Cell 83, 675-8 [DOI: 10.1016/0092-8674(95)90179-5] [PubMed: 8521483].
Minireview on the sources of Ca2+ for generating signals: Ca2+ release from intracellular stores and Ca2+ entry across the plasma membrane.

Monteith, G. R. and Roufogalis, B. D. (1995). The plasma membrane calcium pump - a physiological perspective on its regulation. Cell Calcium, 18, 459-70 [DOI: 10.1016/0143-4160(95)90009-8].
The role of the plasma membrane Ca2+/Mg2+-dependent ATPase in cellular signalling and in intracellular calcium homeostasis.

Berridge, M. A., Bootman, M. D., and Lipp, P. (1998). Calcium - a life and death signal. Nature, 395, 645-7 [DOI: 10.1038/27094] [PubMed: 9790183].
A News and Views feature which puts into perspective the role of calcium in its universal signalling roles.

Hoeflich, K. P. and Ikura, M. (2002). Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108, 739-42 [DOI: 10.1016/S0092-8674(02)00682-7] [PubMed: 11955428].
Structural studies on calmodulin complexes with adenylate cyclase and Ca2+-activated K+ channel.

Taylor, C. W. (2002). Controlling calcium entry. Cell 111, 767-9 [DOI: 10.1016/S0092-8674(02)01197-2] [PubMed: 12526803].
Reviews Ca2+ channels and their control.