We use cookies to enhance your experience on our website. By continuing to use our website, you are agreeing to our use of cookies. You can change your cookie settings at any time. Find out more
Oxford University Press - Online Resource Centres

Elliott & Elliott: Biochemistry and Molecular Biology 4e

Chapter 22

Please note that some of the sites you will be directed to from this page may require a username and password to access the article.


Li, J. J. (1995). Once and once only. Curr. Biol., 5, 472-5 [DOI: 10.1016/S0960-9822(95)00094-7].
Discusses the essential link between the eukaryotic cell cycle and initiation of sites of origin of DNA replication.

Wyman, C. and Botcham, M. (1995). A familiar ring to DNA polymerase processivity. Curr. Biol., 5, 334-7 [DOI: 10.1016/S0960-9822(95)00065-0].
Reviews the sliding clamps in DNA replication.

Baker, T. A. and Bell, S. P. (1998). Polymerases and the replisome: machines within machines. Cell 92, 295-305 [DOI: 10.1016/S0092-8674(00)80923-X] [PubMed: 9476890].

O?Donnell, M. (1999). Processivity factors. Curr. Biol., 9, R545 [DOI: 10.1016/S0960-9822(99)80348-0].
A one-page quick guide to essential facts on the circular clamps that ensure that DNA polymerases can progress for long distances.

Hubscher, U., Nasheuer, H.-P., and Sybaoja, J. E. (2000). Eukaryotic DNA polymerases, a growing family. Trends Biochem. Sci., 25, 143-7 [DOI: 10.1016/S0968-0004(99)01523-6].
Describes the various enzymes and their roles

Kunkel, T. A. and Bebenek, K. (2000). DNA replication fidelity. Annu. Rev. Biochem., 69, 497-529 [DOI: 10.1146/annurev.biochem.69.1.497].
An advanced comprehensive review

Mendez, J. and Stillman, B. (2003). Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. BioEssays, 25, 1158-67 [DOI: 10.1002/bies.10370] [PubMed: 14635251].
Molecules and processes involved in initiation of DNA replication.

Von Hippel, P. H. (2003). Macromolecular complexes that unwind nucleic acids. BioEssays, 25, 1168-77 [DOI: 10.1002/bies.10369] [PubMed: 14635252].
Review on how helicases are ?coupled? to the macromolecular machines of gene expression.


Demple, B. and Karran, P. (1983). Death of an enzyme: suicide repair of DNA. Trends Biochem. Sci., 8, 137-9 [DOI: 10.1016/0968-0004(83)90238-4].
Reviews de-alkylation DNA repair enzymes

Critchlow, S. E. and Jackson, S. P. (1998). DNA end-joining: from yeast to man. Trends Biochem. Sci., 23, 394-8 [DOI: 10.1016/S0968-0004(98)01284-5].
Reviews double-strand break repair

Prolla, T. A. (1998). DNA mismatch repair and cancer. Curr. Opin. Cell Biol., 10, 311 [DOI: 10.1016/S0955-0674(98)80005-7].

Featherstone, C. and Jackson, S. P. (1999). Double strand break repair. Curr. Biol., 9, R759-61 [DOI: 10.1016/S0960-9822(99)80337-6].
A ?primer? concise summary

Jiricny, J. (2002). An APE that proofreads. Nature, 415, 593-4 [DOI: 10.1038/415593a] [PubMed: 11832924].
Short summary on correction of base excision-repair mistakes.

Sancar, A., et al. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem., 73, 39-85 [DOI: 10.1146/annurev.biochem.73.011303.073723].
A review of DNA damage response reactions.

David, S. S. (2005). DNA search and rescue. Nature, 434, 569-70 [DOI: 10.1038/434569a] [PubMed: 15800603].
A News and Views article on the mechanism by which DNA repair enzymes locate a fault in the DNA among all the correct ones.


Greider, C. W. and Blackburn, E. H. (1996). Telomeres, telomerase and cancer. Sci. Am., 274(2), 80-5.
Discusses the problem of DNA end replication, DNA shortening, and how telomerase protects chromosomal end segments. Possible relevance to ageing and cancer discussed.

Johnson, F. B., Marcniak, R. A., and Guarente, L. (1998). Telomeres, the nucleolus and ageing. Curr. Opin. Cell Biol., 10, 332-8 [DOI: 10.1016/S0955-0674(98)80008-2].
Discusses the relationship between telomere lengthening and replicative senescence. Includes discussion of the relationship to human ageing.

Nagley, P. and Wei, Y.-H. (1998). Ageing and mammalian mitochondrial genetics. Trends Genet., 14, 513-17 [DOI: 10.1016/S0168-9525(98)01580-7].
An account of mitochondrial mutations and their possible relationship to ageing.

Greider, C. W. (1999). Telomeres do D-loop-T-loop. Cell 97, 419-422 [DOI: 10.1016/S0092-8674(00)80750-3] [PubMed: 10338204].
Minireview, explains how telomere ends form terminal loops.

Dunham, M. A., et al. (2000). Telomere maintenance by recombination in human cells. Nat. Genet., 26, 447-50 [DOI: 10.1038/82586].
Describes the ALT mechanism of telomere synthesis which is an alternative to telomerase in cancer cells.

Battacharya, M. K. and Lustig, A. J. (2006). Telomere dynamics in genome stability. Trends Biochem. Sci., 31, 114-22 [DOI: 10.1016/j.tibs.2005.12.001].
An advanced review dealing with the consequences of telomerase deficiency.

Mitochondrial DNA abnormalities

Hammans, S. R. (1994). Mitochondrial DNA and disease. Essays Biochem., 28, 99-112.
A discussion of diseases arising from abnormalities in mitochondrial DNA.