New Perspectives in Stochastic Geometry
Edited by Wilfrid S. Kendall and Ilya Molchanov
Table of Contents
Preface
1. Classical stochastic geometry, Rolf Schneider & Wolfgang Weil
I NEW DEVELOPMENTS IN CLASSICAL STOCHASTIC GEOMETRY
2. Random polytopes, Matthias Reitzner
3. Modern random measures: Palm theory and related models, Günter Last
4. Limit theorems in stochastic geometry, Tomasz Schreiber
5. Tessellations, P. Calka
II STOCHASTIC GEOMETRY AND MODERN PROBABILITY
6. Percolation and random graphs, Remco van der Hofstad
7. Random directed and on-line networks, Mathew D. Penrose & Andrew R. Wade
8. Random fractals, Peter Mörters
III STATISTICS AND STOCHASTIC GEOMETRY
9. Inference, Jesper Møller
10. Statistical shape theory, W.S. Kendall & Huiling Le
11. Set estimation, Antonio Cuevas & Ricardo Fraiman
12. Data depth: multivariate statistics and geometry, Ignacio Cascos
IV APPLICATIONS
13. Applications of stochastic geometry in image analysis, M.N.M. van Lieshout
14. Stereology, Werner Nagel
15. Physics of spatially structured materials, Klaus Mecke
16. Stochastic geometry and telecommunications networks, Sergei Zuyev
17. Random sets in finance and econometrics, Ilya Molchanov
Index